Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(48): e2304717, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37516451

RESUMO

Active matrix (AM) quantum-dot light-emitting diodes (QLEDs) driven by thin-film transistors (TFTs) have attracted significant attention for use in next-generation displays. Several challenges remain for the realisation of AM-QLEDs, such as device design, fabrication process, and integration between QLEDs and TFTs, depending on their device structures and configurations. Herein, efficient and stable AM-QLEDs are demonstrated using conventional and inverted structured QLEDs (C- and I-QLEDs, respectively) combined with facile type-convertible (p- and n-type) single-walled carbon nanotube (SWNT)-based TFTs. Based on the four possible configurations of the QLED-TFT subpixel, the performance of the SWNT TFT-driven QLEDs and the fabrication process to determine the ideal configuration are compared, taking advantage of each structure for AM-QLEDs. The QLEDs and TFTs are also optimized to maximise the performance of the AM-QLEDs-the inner shell composition of quantum dots and carrier type of TFTs-resulting in a maximum external quantum efficiency and operational lifetime (at an initial luminance of 100 cd m2 ) of 21.2% and 38 100 000 h for the C-QLED, and 19.1% and 133100000 h for the I-QLED, respectively. Finally, a 5×5 AM-QLED display array controlled using SWNT TFTs is successfully demonstrated. This study is expected to contribute to the development of advanced AM-QLED displays.

2.
Science ; 376(6596): 1006-1012, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617386

RESUMO

Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired power and control systems. This hardware introduces risks for infection, limitations on patient mobility, and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control. We present a transient closed-loop system that combines a time-synchronized, wireless network of skin-integrated devices with an advanced bioresorbable pacemaker to control cardiac rhythms, track cardiopulmonary status, provide multihaptic feedback, and enable transient operation with minimal patient burden. The result provides a range of autonomous, rate-adaptive cardiac pacing capabilities, as demonstrated in rat, canine, and human heart studies. This work establishes an engineering framework for closed-loop temporary electrotherapy using wirelessly linked, body-integrated bioelectronic devices.


Assuntos
Implantes Absorvíveis , Estimulação Cardíaca Artificial , Marca-Passo Artificial , Cuidados Pós-Operatórios , Tecnologia sem Fio , Animais , Cães , Frequência Cardíaca , Humanos , Cuidados Pós-Operatórios/instrumentação , Ratos
3.
Adv Mater ; 34(17): e2109673, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35246891

RESUMO

With the surge in perovskite research, practical features for future applications are desired to be secured, but the reliability of the materials and the use of hazardous Pb are longstanding problems. Here, an air-stable Cs2 SnI6 (CSI) is prepared via diluted hydriodic acid solvent-based precursor optimization during scalable hydrothermal growth. Materials characterization is performed using various elemental peak analyses and crystallographic identification. The resulting CSI exhibits long-term operating stability over 6 months, i) at elevated temperatures, ii) in ambient air, and iii) under light illumination from UV to near-infrared. More importantly, to demonstrate an intriguing class of applications up to system level, physically detachable CSI photodetector arrays (PD-arrays), integrated with micro-light-emitting-diodes (µ-LEDs) arrays, are successfully fabricated. In addition, 3 × 3 flexible CSI PDs are fully operational, even in air, and their spatial uniformity in pixels is quantitatively evaluated. The charge-transport mechanisms of the CSI PDs under light and elevated temperature are assessed via temperature-dependent characterization from 148 to 373 K, implying the involvement of 3D variable-range hopping. Multicycle evaluation of the CSI PD-arrays confirms their operational stability in AC and DC modes, demonstrating this platform's potential benefit for wireless optical interconnection in advanced Si technology.

4.
Small Methods ; 5(12): e2100907, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928019

RESUMO

An ion-exchange process is a promising approach to design advanced electrode materials for high-performance energy storage devices. Herein, a nanostructured Ni3 Sn2 S2 -CoS (NSS-CS) composite is fabricated by successive hydrothermal and ion-exchange processes. Since the incorporation of redox-rich cobalt element enables the NSS-CS composite to be more electrochemically active, its impact on the electrochemical performance is therefore extensively studied. Particularly, the NSS-CS-0.2 g electrode material delivered a high areal capacity of 830.4 µAh cm-2 at 5 mA cm-2 . Additionally, a room-temperature wet-chemical approach is employed to anchor nanosilver (nAg)-particles on the NSS-CS-0.2 g (nAg@NSS-CS-0.2 g) to further exalt its electrokinetics. Consequently, the nAg@NSS-CS-0.2 g electrode shows a higher areal capacity of 948.5 µAh cm-2 (193.5 mAh g-1 ) than that of the NSS-CS-0.2 g. Furthermore, its practicability is also examined by assembling a hybrid cell. The assembled hybrid cell delivers a high areal capacity of 969.2 µAh cm-2 (49.2 mAh g-1 ) at 7 mA cm-2 and maximum areal energies and power densities of 0.784 mWh cm-2 (40.8 Wh kg-1 ) and 45 mW cm-2 (2347.4 W kg-1 ), respectively. The efficiency of the hybrid cells is also tested by harvesting solar energy, followed by energizing electronic components. This work can pave the way for significant attraction in designing advanced electrodes for energy-related fields.

5.
Nanomaterials (Basel) ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204218

RESUMO

Photodetectors and display backplane transistors based on molybdenum disulfide (MoS2) have been regarded as promising topics. However, most studies have focused on the improvement in the performances of the MoS2 photodetector itself or emerging applications. In this study, to suggest a better insight into the photodetector performances of MoS2 thin film transistors (TFTs), as photosensors for possible integrated system, we performed a comparative study on the photoresponse of MoS2 and hydrogenated amorphous silicon (a-Si:H) TFTs. As a result, in the various wavelengths and optical power ranges, MoS2 TFTs exhibit 2~4 orders larger photo responsivities and detectivities. The overall quantitative comparison of photoresponse in single device and inverters confirms a much better performance by the MoS2 photodetectors. Furthermore, as a strategy to improve the field effect mobility and photoresponse of the MoS2 TFTs, molecular doping via poly-L-lysine (PLL) treatment was applied to the MoS2 TFTs. Transfer and output characteristics of the MoS2 TFTs clearly show improved photocurrent generation under a wide range of illuminations (740~365 nm). These results provide useful insights for considering MoS2 as a next-generation photodetector in flat panel displays and makes it more attractive due to the fact of its potential as a high-performance photodetector enabled by a novel doping technique.

6.
Small ; 17(26): e2008131, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33969631

RESUMO

In this study, as system-level photodetectors, light-to-frequency conversion circuits (LFCs) are realized by i) photosensitive ring oscillators (ROs) composed of amorphous indium-gallium-zinc-oxide/single-walled carbon nanotube (a-IGZO/SWNT) thin film transistors (TFTs) and ii) phase-locked-loop Si circuits built with frequency-to-digital converters (PFDC). The 3-stage ROs and logic gates based on a-IGZO/SWNT TFTs successfully demonstrate its performance on flexible substrates. Herein, along with the advantage of scalability, a-IGZO films are used as photosensitive n-type TFTs and SWNTs are employed as photo-insensitive p-type TFTs for better photosensitivity in circuit level. Through the controlling a post-annealing condition of a-IGZO film, responsivities and detectivities of a-IGZO TFTs are obtained as 36 AW-1 and 0.3 × 1012 Jones for red, 93 AW-1 and 3.1 × 1012 Jones for green, and 194 AW-1 and 11.7 × 1012 Jones for blue. Furthermore, as an advanced demonstration for practical application of LFCs, a unique circuit (i.e., PFDC) is designed to analyze the generated oscillation frequency (fosc ) from the LFC device and convert it to a digital code. As a result, the designed PFDC can exactly count the generated fosc from the flexible a-IGZO/SWNT ROs under light illumination with an outstanding sensitivity and assign input frequencies to respective digital code.

7.
Micromachines (Basel) ; 12(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806662

RESUMO

Animal telemetry has been recognized as a core platform for exploring animal species due to future opportunities in terms of its contribution toward marine fisheries and living resources. Herein, biologging systems with pressure sensors are successfully implemented via open-source hardware platforms, followed by immediate application to captive harbor seals (HS). Remotely captured output voltage signals in real-time mode via Bluetooth communication were reproducibly and reliably recorded on the basis of hours using a smartphone built with data capturing software with graphic user interface (GUI). Output voltages, corresponding to typical behaviors on the captive HS, such as stopping (A), rolling (B), flapping (C), and sliding (D), are clearly obtained, and their analytical interpretation on captured electrical signals are fully validated via a comparison study with consecutively captured images for each motion of the HS. Thus, the biologging system with low cost and light weight, which is fully compatible with a conventional smartphone, is expected to potentially contribute toward future anthology of seal animals.

8.
Micromachines (Basel) ; 12(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375000

RESUMO

Channel shape dependency on device instability for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) is investigated by using various channel shape devices along with systematic electrical characterization including DC I-V characeristics and bias temperature stress tests. a-IGZO TFTs with various channel shapes such as zigzag, circular, and U-type channels are implemented and their vertical and lateral electric field stress (E-field) effects are systematically tested and analyzed by using an experimental and modeling study. Source and drain (S/D) electrode asymmetry and vertical E-field effects on device instability are neglibible, whereas the lateral E-field effects significantly affect device instability, particularly for zigzag channel shape, compared to circular and U-type TFTs. Moreover, charge trapping time (τ) for zigzag-type a-IGZO TFTs is extracted as 3.8 × 104, which is at least three-times smaller than those of other channel-type a-IGZO TFTs, hinting that local E-field enhancement can critically affect the device reliability. The Technology Computer Aided Design (TCAD) simulation results reveal the locally enhanced E-field at both corner region in the channel in a quantitative mode and its correlation with hemisphere radius (ρ) values.

9.
Data Brief ; 32: 106272, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32984466

RESUMO

Herein, the material structural properties such as phase, morphology, chemical composition, and surface area for In2S3 nanoflakes, synthesized by a one-step solvothermal method, are studied [1]. The comparative electrochemical performance data of indium based electrode material is presented to establish the practical suitability of prepared In2S3 electrode material. Device demonstration of fabricated solid-state supercapacitor device on different time frames set performance level demonstration of current work and suggest a potential candidate for next-generation energy storage electrode material.

10.
Data Brief ; 32: 106103, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32793785

RESUMO

Herein, the physical properties such as crystal phase, morphology, and chemical composition for Cu2CoSnS4 (CCTS) nanoparticles, synthesized by hydrothermal growth at 200 °C, are studied according to the short reaction times from 1 h to 6 h, respectively. The raw data of chemical composition, XPS analysis, and their electrical properties of CCTS nanoparticles prepared at 200 °C for 12 h with different Cu concentrations are presented [1] in the present manuscript. Materials properties of CCTS and their electrical, optical properties were systematically studied, and their correlation between physical properties and materials properties is strongly studied in depth mode.

11.
Small ; 15(7): e1803852, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30637933

RESUMO

In recent past, for next-generation device opportunities such as sub-10 nm channel field-effect transistors (FETs), tunneling FETs, and high-end display backplanes, tremendous research on multilayered molybdenum disulfide (MoS2 ) among transition metal dichalcogenides has been actively performed. However, nonavailability on a matured threshold voltage control scheme, like a substitutional doping in Si technology, has been plagued for the prosperity of 2D materials in electronics. Herein, an adjustment scheme for threshold voltage of MoS2 FETs by using self-assembled monolayer treatment via octadecyltrichlorosilane is proposed and demonstrated to show MoS2 FETs in an enhancement mode with preservation of electrical parameters such as field-effect mobility, subthreshold swing, and current on-off ratio. Furthermore, the mechanisms for threshold voltage adjustment are systematically studied by using atomic force microscopy, Raman, temperature-dependent electrical characterization, etc. For validation of effects of threshold voltage engineering on MoS2 FETs, full swing inverters, comprising enhancement mode drivers and depletion mode loads are perfectly demonstrated with a maximum gain of 18.2 and a noise margin of ≈45% of 1/2 VDD . More impressively, quantum dot light-emitting diodes, driven by enhancement mode MoS2 FETs, stably demonstrate 120 cd m-2 at the gate-to-source voltage of 5 V, exhibiting promising opportunities for future display application.

12.
Hear Res ; 366: 32-37, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29804722

RESUMO

Sensory information in a temporal sequence is processed as a collective unit by the nervous system. The cellular mechanisms underlying how sequential inputs are incorporated into the brain has emerged as an important subject in neuroscience. Here, we hypothesize that information-bearing (IB) signals can be entrained and amplified by a clock signal, allowing them to efficiently propagate along in a feedforward circuit. IB signals can remain latent on individual dendrites of the receiving neurons until they are read out by an oscillatory clock signal. In such a way, the IB signals pass through the next neurons along a linear chain. This hypothesis identifies a cellular process of time-to-space and sound-to-map conversion in primary auditory cortex, providing insight into a mechanistic principle underlying the representation and memory of temporal sequences of information.


Assuntos
Percepção Auditiva/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Retroalimentação Fisiológica , Humanos , Modelos Neurológicos , Modelos Psicológicos , Rede Nervosa/fisiologia , Transmissão Sináptica/fisiologia
13.
Nanotechnology ; 26(45): 455201, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26472092

RESUMO

We demonstrated highly stable multilayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with negligible hysteresis gap (ΔV(HYS) ∼ 0.15 V) via a multiple annealing scheme, followed by systematic investigation for long-term air stability with time (∼50 days) of MoS2 FETs with (or without) CYTOP encapsulation. The extracted lifetime of the device with CYTOP passivation in air was dramatically improved from 7 to 377 days, and even for the short-term bias stability, the experimental threshold voltage shift, outstandingly well-matched with the stretched exponential function, indicates that the device without passivation has approximately 25% larger the barrier distribution (ΔE(B) = k(B)T(o)) than that of a device with passivation. This work suggests that CYTOP encapsulation can be an efficient method to isolate external gas (O2 and H2O) effects on the electrical performance of FETs, especially with low-dimensional active materials like MoS2.

14.
ACS Appl Mater Interfaces ; 7(15): 8268-74, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25805699

RESUMO

This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.


Assuntos
Materiais Biocompatíveis/síntese química , Gálio/química , Índio/química , Transistores Eletrônicos , Água/química , Óxido de Zinco/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Solubilidade
15.
Nat Commun ; 5: 5332, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25387684

RESUMO

Recent progress in the field of single-walled carbon nanotubes (SWNTs) significantly enhances the potential for practical use of this remarkable class of material in advanced electronic and sensor devices. One of the most daunting challenges is in creating large-area, perfectly aligned arrays of purely semiconducting SWNTs (s-SWNTs). Here we introduce a simple, scalable, large-area scheme that achieves this goal through microwave irradiation of aligned SWNTs grown on quartz substrates. Microstrip dipole antennas of low work-function metals concentrate the microwaves and selectively couple them into only the metallic SWNTs (m-SWNTs). The result allows for complete removal of all m-SWNTs, as revealed through systematic experimental and computational studies of the process. As one demonstration of the effectiveness, implementing this method on large arrays consisting of ~20,000 SWNTs completely removes all of the m-SWNTs (~7,000) to yield a purity of s-SWNTs that corresponds, quantitatively, to at least to 99.9925% and likely significantly higher.

16.
Nat Nanotechnol ; 8(5): 347-55, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23624697

RESUMO

Among the remarkable variety of semiconducting nanomaterials that have been discovered over the past two decades, single-walled carbon nanotubes remain uniquely well suited for applications in high-performance electronics, sensors and other technologies. The most advanced opportunities demand the ability to form perfectly aligned, horizontal arrays of purely semiconducting, chemically pristine carbon nanotubes. Here, we present strategies that offer this capability. Nanoscale thermocapillary flows in thin-film organic coatings followed by reactive ion etching serve as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous aligned arrays grown on quartz substrates. The low temperatures and unusual physics associated with this process enable robust, scalable operation, with clear potential for practical use. We carry out detailed experimental and theoretical studies to reveal all of the essential attributes of the underlying thermophysical phenomena. We demonstrate use of the purified arrays in transistors that achieve mobilities exceeding 1,000 cm(2) V(-1) s(-1) and on/off switching ratios of ∼10,000 with current outputs in the milliamp range. Simple logic gates built using such devices represent the first steps toward integration into more complex circuits.

17.
Adv Mater ; 25(20): 2773-8, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23440975

RESUMO

Materials and designs are presented for electronics and sensors that can be conformally and robustly integrated onto the surface of the skin. A multifunctional device of this type can record various physiological signals relevant to health and wellness. This class of technology offers capabilities in biocompatible, non-invasive measurement that lie beyond those available with conventional, point-contact electrode interfaces to the skin.


Assuntos
Bandagens , Materiais Biocompatíveis/síntese química , Eletrônica/instrumentação , Epiderme/fisiologia , Impressão Molecular/métodos , Nanomedicina/instrumentação , Fenômenos Fisiológicos da Pele , Adulto , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Teste de Materiais , Adulto Jovem
18.
ACS Nano ; 7(2): 1299-308, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23320505

RESUMO

Accurate electrostatics modeling of nanotubes (NTs)/nanowires (NWs) has significant implications for the ultimate scalability of aligned-array NT/NW field-effect transistors (FETs). The analysis to date has focused on limits of capacitive coupling between the 1D channel and 2D gate that is strictly relevant only in the linear response operation of NT/NW-FETs. Moreover, the techniques of electrostatic doping by independent gates that cover only part of the channel are widely used, but the nature of its electrostatic coupling has not been explored. In this paper, we use a three-dimensional, self-consistent model for NT/NW-FETs to interpret the essence of electrostatic coupling with complex configuration of electrode geometries. The interplay between 3D electric fields and its 1D termination onto the NTs/NWs suggests surprising complexity of electrostatic interaction not captured in simpler models. This coupling can change the performance metrics such as ON and OFF currents by orders of magnitude depending on (1) NT/NW density, (2) bias voltage, and (3) gate overlap length. Remarkably, this parasitic coupling persists regardless of the gate oxide thickness, changes in dielectric constant, and/or the width of the diameter distribution of NTs/NWs. The predictions of the model are systematically validated by a series of experiments.

19.
Proc Natl Acad Sci U S A ; 107(40): 17095-100, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20858729

RESUMO

Reversible control of adhesion is an important feature of many desired, existing, and potential systems, including climbing robots, medical tapes, and stamps for transfer printing. We present experimental and theoretical studies of pressure modulated adhesion between flat, stiff objects and elastomeric surfaces with sharp features of surface relief in optimized geometries. Here, the strength of nonspecific adhesion can be switched by more than three orders of magnitude, from strong to weak, in a reversible fashion. Implementing these concepts in advanced stamps for transfer printing enables versatile modes for deterministic assembly of solid materials in micro/nanostructured forms. Demonstrations in printed two- and three-dimensional collections of silicon platelets and membranes illustrate some capabilities. An unusual type of transistor that incorporates a printed gate electrode, an air gap dielectric, and an aligned array of single walled carbon nanotubes provides a device example.


Assuntos
Nanotubos de Carbono/química , Impressão/métodos , Animais , Dimetilpolisiloxanos/química , Elasticidade , Teste de Materiais , Nylons/química , Impressão/instrumentação , Silício/química , Estresse Mecânico , Propriedades de Superfície
20.
J Nanosci Nanotechnol ; 8(9): 4675-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19049083

RESUMO

Nanocomposites, based on multiwalled carbon nanotube (MWCNT) and various acrylic copolymers of poly(methyl methacrylate-co-butyl acrylate)s, were prepared and the effects of the copolymer compositions on the electrical and the dynamic mechanical properties of the nanocomposites investigated. Latices of the acrylic copolymer were prepared by emulsion polymerization, and then mixed with MWCNT dispersed in N-methylpyrrolidone to prepare the nanocomposites. The electrical resistivities of the nanocomposites showed threshold decreases with increasing MWCNT content, due to percolation. The critical MWCNT content (Pc) in the nanocomposites for percolation showed minimum with increasing butyl acrylate content within the poly(methyl methacrylate-co-butyl acrylate). Specifically, the nanocomposites of the acrylic copolymer with a butyl acrylate content of 20-40 wt% showed the lowest Pc value of all the nanocomposites investigated. The nanocomposites showed large increases in the storage moduli in the rubbery plateau region. A decrease in the glass transition temperature (Tg) was observed with the nanocomposites and attributed to the characteristics of the nanocomposites, where the large surface area of MWCNT makes the matrix polymers similar to those of free stand thin film polymers.


Assuntos
Acrilatos/química , Nanocompostos/química , Nanotubos de Carbono/química , Polimetil Metacrilato/química , Varredura Diferencial de Calorimetria/métodos , Condutividade Elétrica , Eletroquímica/métodos , Polímeros/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...